Publication:
A Visual Analytics Approach for Exploration of High-Dimensional Time Series Based on Neighbor-Joining Tree Actualizado

dc.contributor.advisor Figueroa Malaver, Eduardo
dc.contributor.advisor Martínez Salazar, Benito
dc.contributor.author Roberto Rodríguez Urquiaga
dc.contributor.author Reynaldo Alfonte Zapana
dc.contributor.author Ana Maria Cuadros Valdivia
dc.contributor.corporatename Pontificia Universidad Católica del Perú IQ
dc.contributor.corporatename Universidad de Lima IQ
dc.contributor.editor Salazar Ulártegui, José
dc.contributor.editor Cáceres Maldonado, Mauricio
dc.contributor.editorou Universidad de Lima IQ
dc.contributor.editorou Pontificia Universidad Católica de Lima IQ
dc.date.accessioned 2025-06-20T13:53:23Z
dc.date.available 2025-06-20T13:53:23Z
dc.date.issued 2018-03-02
dc.description.abstract High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data Actualizado.
dc.description.abstract When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two wellknown similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively. © 2018 Association for Computing Machinery.
dc.description.sponsorship The authors would like to thank CONCYTEC (Consejo Nacional de Ciencia, Tecnología e Innovacíón Tecnológica)
dc.description.sponsorship FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico) and UNSA (Universidad Nacional SanAgustín) of Perú.
dc.identifier.doi 10.1145/3177457.3177466
dc.identifier.isbn 978145000333
dc.identifier.isbn 978145000300
dc.identifier.issn 1212-2323
dc.identifier.issn 2355-5533
dc.identifier.pmid 30396333
dc.identifier.uri https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049863164&doi=10.1145%2f3177457.3177466&partnerID=40&md5=e1079a2e8febb9c5c076632400fc7af1
dc.identifier.uri https://dev2-repositorio.concytec.gob.pe/handle/123456789/3966
dc.language.iso es
dc.language.iso en_US
dc.publisher Association for Computing Machinery 333
dc.relation.isbn 9852154785333
dc.relation.ispartof Proceedings of the 10th International Conference on Computer Modeling and Simulation 333
dc.relation.ispartofseries Fuente IQ 333
dc.relation.issn 1256-1333
dc.rights http://purl.org/coar/access_right/c_abf2
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.uri https://creativecommons.org/licenses/by/4.1/
dc.subject Bioinformatics
dc.subject Data visualization
dc.subject Forestry
dc.subject Joining
dc.subject Time series
dc.subject Visualization
dc.subject Dimension reduction techniques
dc.subject Exploratory analysis
dc.subject Interaction mechanisms
dc.subject Neighbor joining
dc.subject Similarity measure
dc.subject Visual analytics
dc.subject Visual techniques
dc.subject Time series analysis
dc.subject.ddc 620
dc.subject.ddc 333
dc.subject.loc LC620
dc.subject.loc LC333
dc.subject.mesh M620
dc.subject.mesh M333
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.02.03
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.02.02
dc.title A Visual Analytics Approach for Exploration of High-Dimensional Time Series Based on Neighbor-Joining Tree Actualizado
dc.title.alternative Publicación para Actualizar 333
dc.title.alternative Publicación IQ 333
dc.type http://purl.org/coar/resource_type/c_2f33
dspace.entity.type Publication
oaire.citation.edition 2da. Ed.
oaire.citation.endPage 128
oaire.citation.issue 2
oaire.citation.number 4
oaire.citation.startPage 123
oaire.citation.volume 13
oaire.version http://purl.org/coar/version/c_970fb48d4fbd8a85
oairecerif.access.embargoEnd 2018-10-01
oairecerif.editor.affiliation Pontificia Universidad Católica del Perú IQ
oairecerif.editor.affiliation Universidad de Lima IQ
perucris.advisor.dni 71258474
perucris.advisor.dni 33333333
perucris.advisor.orcid 0081-0091-0025-0085
perucris.advisor.orcid 0025-0091-2589-3333
perucris.editor.dni 45879631
perucris.editor.dni 34587962
perucris.editor.orcid 0112-0221-0331-0442
perucris.editor.orcid 1155-2233-5544-5896
renati.discipline Programa de Actualización 1-333
renati.discipline Programa de Actualización 2-333
renati.juror Mendoza Tomaylla, Jean Pierre
renati.juror Hurtado Báez, Juan Manuel
renati.level https://purl.org/pe-repo/renati/nivel#bachiller
renati.type https://purl.org/pe-repo/renati/type#trabajoDeInvestigacion
thesis.degree.discipline P333
thesis.degree.discipline P333-001
thesis.degree.grantor Universidad de Lima IQ
thesis.degree.name Maestría IQ-333
thesis.degree.name Maestría IQ2-333
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
QA IQ Publication.txt
Size:
17 B
Format:
Plain Text
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: