Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "119Sn Mössbauer spectroscopy"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
Results Per Page
Sort Options
  • Publication
    Structural and magnetic properties of disordered crystalline Fe50Mn25+xSn25?x alloys with x =-1.25, 0.0, 2.5, 5.0, 7.5 [Propiedades estructurales y magnéticas de aleaciones cristalinas desordenadas Fe50Mn25+xSn25?x con x =-1.25, 0.0, 2.5, 5.0, 7.5]
    (Universidad Nacional de Colombia, 2021)
    Pachín W.
    ;
    Peña V.A.
    ;
    León M.
    ;
    Rojas C.
    ;
    Medina J.J.
    ;
    Landauro C.V.
    ;
    Quispe J.
    ;
    Agüero J.
    ;
    Passamani E.C.
    ;
    Baggio-Saitovitch E.
    Disordered crystalline Fe50Mn25+xSn25?x alloys, with x =-1.25, 0.0, 2.5, 5.0, 7.5 (close to the full-Heusler alloys), were arc-melted in a high purity argon atmosphere and the molten pellets were individually sealed in quartz tubes also under argon atmosphere. Subsequently, they were annealed at 1173 K for 4 days, being finally quenched in a bath with cold water. Structural and magnetic properties have systematically been studied using X-ray diffraction,57Fe, and119Sn Mössbauer spectroscopies, and magnetization measurements recorded at room temperature. Rietveld refinement of the X-ray diffraction patterns of the annealed samples with x =-1.25 and 0 has revealed the presence of two hexagonal crystallographic phases: (i) a chemically disordered solid solution identified as ??(Fe/Mn)3Sn (majority fraction) and (ii) the ??Fe5Sn3 intermetallic compound (minority fraction). For samples with x = 2.5, 5.0, and 7.5, the Rietveld analysis has only indicated the presence of a chemically disordered solid solution identified as ??(Fe/Mn)3(Sn/Fe/Mn). Although compositions of the Fe50Mn25+xSn25?x alloys are close to that of full-Heusler alloys, none of them has the expected L21 structure. The average crystallite sizes, estimated from the Williamson-Hall method, are in the range of 256-62 nm. The average sizes has gradually decreased as the x-content is increased. Mössbauer results have shown localized-type magnetism from Fe non-equivalent sites, and itinerant-like magnetism on119Sn-probes. Magnetic hysteresis loops, recorded at 300 K for a maximum field of 2200 Oe, have indicated that the remanent and coercive fields have systematically decreased as the x-parameter has increased. Coercive fields are in the range for soft magnets (1-20 Oe). © 2021, Universidad Nacional de Colombia. All rights reserved.
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback